Fecal-Derived Phenol Induces Egg-Laying Aversion in Drosophila
نویسندگان
چکیده
Feces is an abundant, rich source of energy, utilized by a myriad of organisms, not least by members of the order Diptera, i.e., flies. How Drosophila melanogaster reacts to fecal matter remains unclear. Here, we examined oviposition behavior toward a range of fecal samples from mammals native to the putative Southeast African homeland of the fly. We show that D. melanogaster display a strong oviposition aversion toward feces from carnivorous mammals but indifference or even attraction toward herbivore dung. We identify a set of four predictor volatiles, which can be used to differentiate fecal from non-fecal matter, as well as separate carnivore from herbivore feces. Of these volatiles, phenol-indicative of carnivore feces-confers egg-laying aversion and is detected by a single class of sensory neurons expressing Or46a. The Or46a-expressing neurons are necessary and sufficient for oviposition site aversion. We further demonstrate that carnivore feces-unlike herbivore dung-contain a high rate of pathogenic bacteria taxa. These harmful bacteria produce phenol from L-tyrosine, an amino acid specifically enriched in high protein diets, such as consumed by carnivores. Finally, we demonstrate that carnivore feces, as well as phenol, is also avoided by a ball-rolling species of dung beetle, suggesting that phenol is a widespread avoidance signal because of its association with pathogenic bacteria.
منابع مشابه
Egg-Laying Demand Induces Aversion of UV Light in Drosophila Females
Drosophila melanogaster females are highly selective about the chemosensory quality of their egg-laying sites, an important trait that promotes the survival and fitness of their offspring. How egg-laying females respond to UV light is not known, however. UV is a well-documented phototactic cue for adult Drosophila, but it is an aversive cue for larvae. Here, we show that female flies exhibit UV...
متن کاملEgg Laying Decisions in Drosophila Are Consistent with Foraging Costs of Larval Progeny
Decision-making is defined as selection amongst options based on their utility, in a flexible and context-dependent manner. Oviposition site selection by the female fly, Drosophila melanogaster, has been suggested to be a simple and genetically tractable model for understanding the biological mechanisms that implement decisions. Paradoxically, female Drosophila have been found to avoid oviposit...
متن کاملBehavioral and circuit basis of sucrose rejection by Drosophila females in a simple decision-making task.
Drosophila melanogaster egg-laying site selection offers a genetic model to study a simple form of value-based decision. We have previously shown that Drosophila females consistently reject a sucrose-containing substrate and choose a plain (sucrose-free) substrate for egg laying in our sucrose versus plain decision assay. However, either substrate is accepted when it is the sole option. Here we...
متن کاملOviposition preference for and positional avoidance of acetic acid provide a model for competing behavioral drives in Drosophila.
Selection of appropriate oviposition sites is essential for progeny survival and fitness in generalist insect species, such as Drosophila melanogaster, yet little is known about the mechanisms regulating how environmental conditions and innate adult preferences are evaluated and balanced to yield the final substrate choice for egg-deposition. Female D. melanogaster are attracted to food contain...
متن کاملTemperature can entrain egg laying rhythm of Drosophila but may not be a stronger zeitgeber than light.
In Drosophila multiple circadian oscillators and behavioral rhythms are known to exist, yet most previous studies that attempted to understand circadian entrainment have focused on the activity/rest rhythm and to some extent the adult emergence rhythm. Egg laying behavior of Drosophila females also follows circadian rhythmicity and has been seen to deviate substantially from the better characte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 26 شماره
صفحات -
تاریخ انتشار 2016